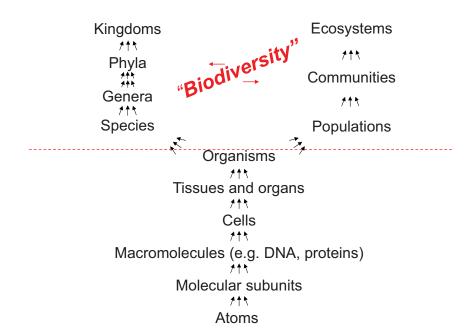


About CofC Academic Programs Library Bookstore Athletics

WebMail WebCT today@CofC School of Science and Math Biology G

Robert D. Podolsky


Evolutionary Ecology and Functional Biology of Marine Invertebrates

Interests

- Life-history evolution and ecology of invertebrate larvae
 Fertilization ecology and evolution of spawned gametes
- · Physiological ecology of development in variable environments
- Plasticity of form and function during ontogeny

"Biology is inherently hierarchical"

Nuts and bolts

Website

What is Lecture Discussions Recitation projects Biol 211? Text, exams Articles, DQs Practical skills

Readings <u>Biological Science</u> 4/e, Freeman –

or Biological Science 4/e Vol. 2, Freeman

journal articles

http://podolskyr.people.cofc.edu/biol211/

~ lecture handouts, articles, DQs, information

~ pwd "ecology" (also on your syllabus)

Policies Attendance & participation (lecture and recitation) -

Assignments

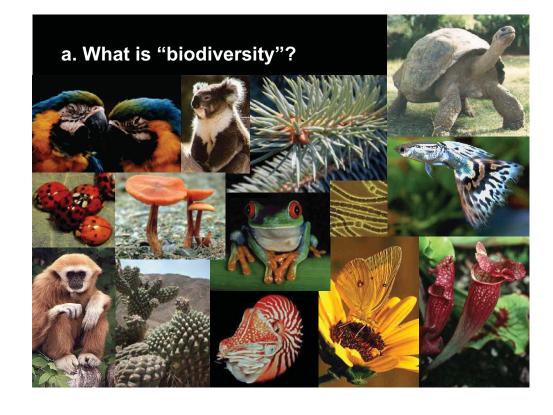
Group projects Extra credit

Do you have an iClicker?

Academic integrity

Lecture M & W 3:05-4:20 (followed by office hours)

Recitation F 11:00-2:00 in RHSC 301


~ DQs due at recitation (this Friday)

Q: Where does this course fit?

Unit 1: Why study "Biodiversity, ecology, and conservation biology"?

- a. What is "biodiversity"?
- b. How is biodiversity distributed?
- c. What is the "biodiversity crisis"?
- d. What are the biggest threats?
- e. What are the costs of the crisis?

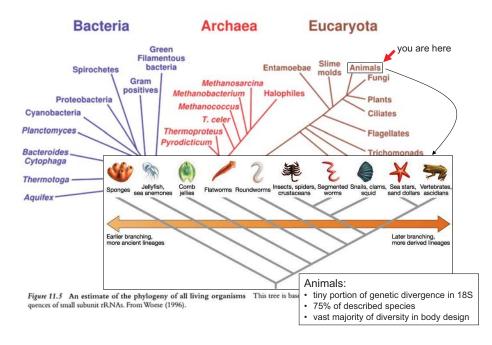
a. What is biodiversity?

Some components

Genetic

- diversity of allelic or other genetic information harbored within populations or species
 - ~ Selection acts on genetic variation

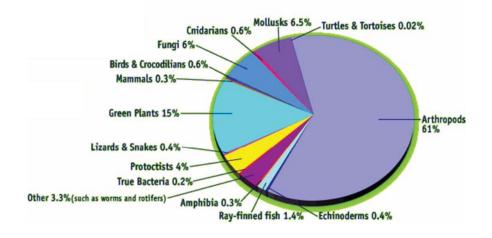
Taxonomic


- diversity of species in a given location
 - " higher taxonomic levels
 - ~ Taxa are unique resources

Ecosystem

- diversity of biological communities and their specific physical conditions
 - ~ Ecosystems support unique organisms and provide essential services

Q: Are <u>different groups of organisms</u> equally diverse?
Q: Are <u>different parts of the world</u> equally diverse?


b. How is biodiversity distributed?

b. How is biodiversity distributed? Species richness

named: ≈ 1.5 million species

estimated: ≈ 5 - 30 million species (how estimated?)

Species richness is not evenly distributed

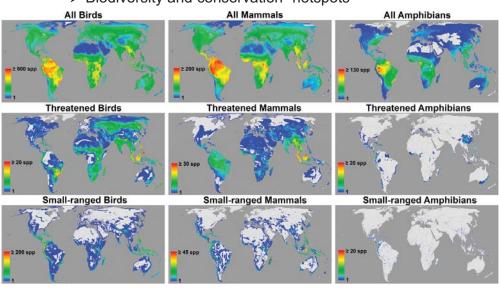
O. Coleoptera ≈ 40% of described arthropods ≈ 32% of described animals

≈ 32% of described animals ≈ 25% of all named organisms

"an inordinate fondness for beetles" – J.B.S. Haldane

Where do these estimates come from?

1. Taxon-specific surveys


- e.g., researchers fogged canopy of single tropical tree
- found >900 beetle species
- extrapolated to other tree species

2. Intensive local sampling

- Great Smoky Mountains National Park: first effort to find and catalog every species
- Started in 1999, will finish in 2015
- Over 650 new species discovered

b. How is biodiversity distributed?

➤ Biodiversity and conservation "hotspots"

Q: Why are endemic (small range) species critical?

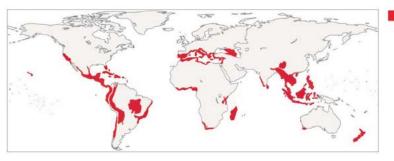
b. How is biodiversity distributed?

➤ Biodiversity and <u>conservation</u> "hotspots"

high proportion of endemics <u>ar</u>

high proportion of endemics <u>and</u> high threat Ex. endemic and threatened plants

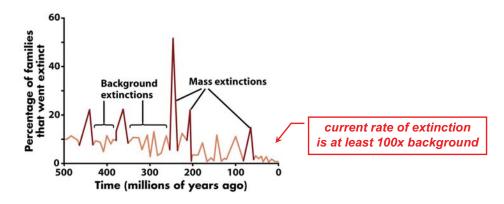
Regions that meet two "conservation


hotspot" criteria:

1. Contain at least 1500 endemic plant species

2. Have lost at least

70% of their primary


vegetation

c. What is the "biodiversity crisis"?

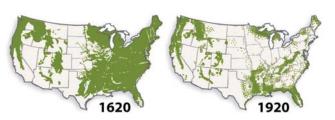
Human activity is responsible for unprecedented rate of extinction

- 100-1000 times faster than expected without human activity
- parallels or exceeds previous mass extinction events

Q: What if extinction > speciation?

d. What are the biggest threats?

• habitat loss and fragmentation



- · logging, burning forest
- grazing livestock
- · converting wetlands
- housing development

Why do fragments degrade more?

- individual range needs
- · increased edge habitat
- · greater isolation

d. What are the biggest threats?

- habitat loss and fragmentation
- environmental alteration/pollution

oil spills (Exxon Valdez, 1989)

polar bear: first mammal listed (2008) as endangered species as result of climate change

d. What are the biggest threats?

- habitat loss and fragmentation
- environmental alteration/pollution
- introduced species

Kauai O'O Extinct, Kauai Akialoa Extinct, O'u Extinct, Kauai Nukupu'u Extinct, Puaiohi less then 200 remain, Kamao Extinct

Hawaiian honeycreepers

- introduction of rats, mongoose, avian malaria, fowlpox
- 15 extinct, 20 endangered

Kudzu. Pueraria lobata

Cogon grass, Imperata cylindrica

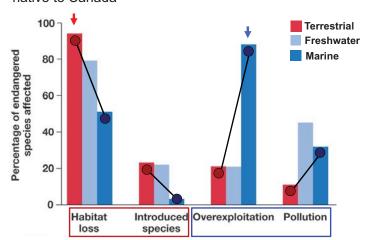
d. What are the biggest threats?

- habitat loss and fragmentation
- environmental alteration/pollution
- introduced species
- overexploitation

baleen whales

· 9 of 11 severely depleted

Status of World Fisheries


passenger pigeon

- "a mile wide and 300 miles long"
- · commercialized as cheap food
- go visit "Martha"! (RIP 9/1/1914)

Human resource use exacerbates other threats

d. What are the biggest threats?

> causes of endangerment for a subset of endangered species native to Canada

What are the biggest threats in terrestrial systems? In marine systems? Which threats are relatively large in terrestrial vs. marine systems?

e. What are the potential costs of the loss?

Economic value – resources (e.g. food, raw materials)

- chemicals (e.g., medicines, preservatives)

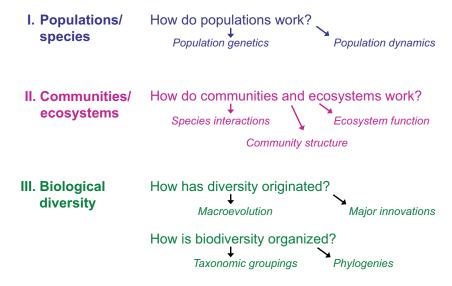
- genes to produce better crops

- "opportunity costs"

Utilitarian value – healthy ecosystems provide services

control erosion purify water

recycle CO₂, nutrients


buffer catastrophic events (fire, flood)

regulate climate

Psychological value – direct or indirect enjoyment of nature

Intrinsic value – organisms have value independent of humans

Our goal: biological principles that can be applied to the conservation of biodiversity

