Goal I: Conserving species What is needed for long-term persistence of populations?

Populations/	How do populations work?	
species	↓ · · · · · · · · · · · · · · · · · · ·	
1	Population genetics	Population dynamics

Population genetics

- Why is genetic diversity important for population persistence?
- · What processes influence population genetic diversity?

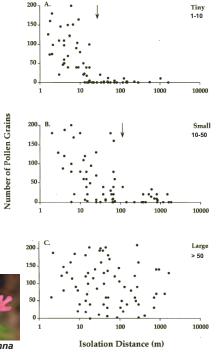
Population dynamics

- Why are small populations especially vulnerable to extinction?
- · Why and how do populations change in size?

Some practical goals

- Conservation biology managing against population decline
- Human population growth where are we headed?
- Disease ecology under what conditions do pathogens outbreak?
- Species interactions what keeps population sizes stable?

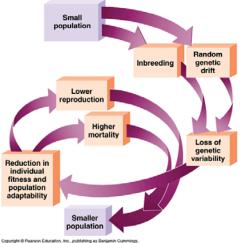
1) Why are small populations so vulnerable to extinction?


low genetic variation?

• inbreeding, genetic drift, and the extinction vortex

~ or ~

low numbers?

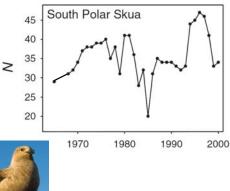

Allee effects

1) Why are small populations so vulnerable to extinction?

low genetic variation?

 inbreeding, genetic drift, and the extinction vortex

1) Why are small populations so vulnerable to extinction?


low genetic variation?

• inbreeding, genetic drift, and the extinction vortex

~ or ~

low numbers?

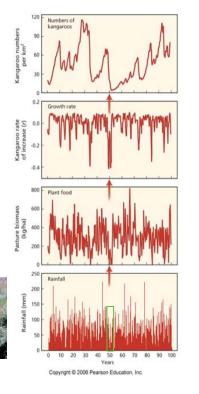
- Allee effects
- demographic stochasticity

Clarkia concinna

1) Why are small populations so vulnerable to extinction?

low genetic variation?

• inbreeding, genetic drift, and the extinction vortex

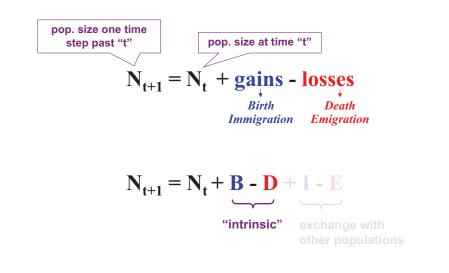

~ or ~

low numbers?

- Allee effects
- demographic stochasticity

+ small range size

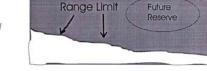
• environmental stochasticity



- Ann

Macropus rufus

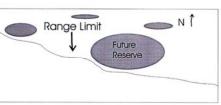
2) How do populations change in size?


➤ they gain and lose individuals

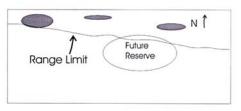
1) Why are small populations so vulnerable to extinction?

low genetic variation?

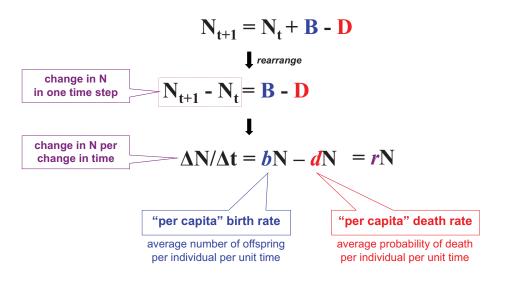
 inbreeding, genetic drift, and the extinction vortex


~ or ~

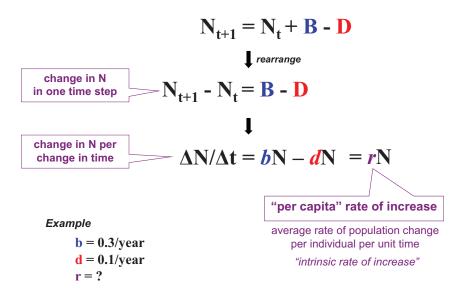
low numbers?


- Allee effects
- demographic stochasticity

+ small range size


- environmental stochasticity
- climate change

NÎ

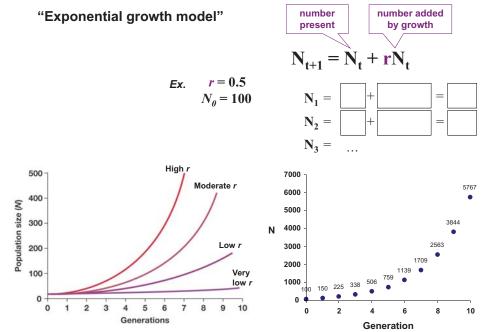


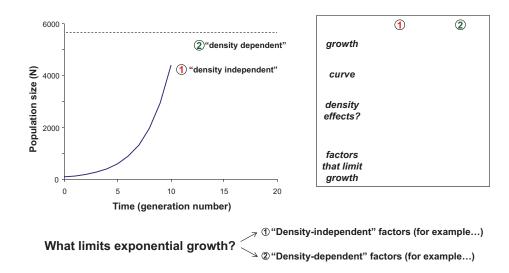
2) How do populations change in size?


Q: when will a population grow? when will it shrink?

2) How do populations change in size?

Q: when will a population grow? when will it shrink?

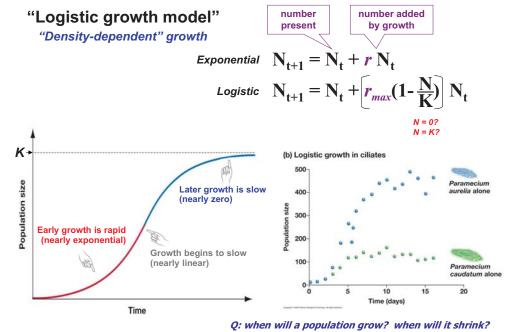

Exponential growth is powerful! Two examples


2) How long would it take descendants of 1 bacterium (weighing 10⁻⁹ g and dividing every 20 min) to equal the weight of the Earth?

2) How do populations change in size?

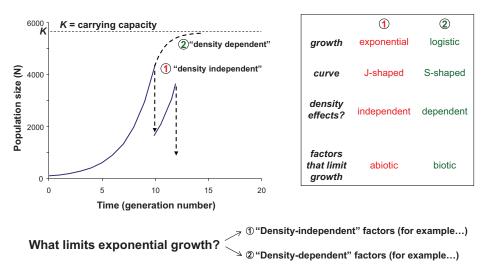
2) How do populations change in size?



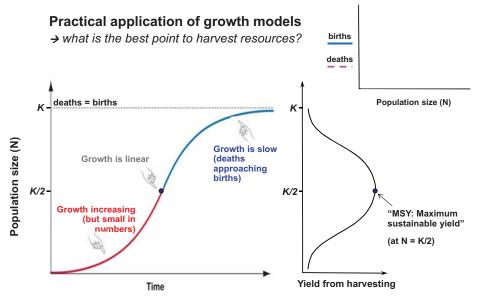

Q: When is exponential (density-independent) growth realistic?

2) How do populations change in size?

Density dependent effects regulate most populations



2) How do populations change in size?



2) How do populations change in size?

Comparison of simple population growth models

2) How do populations change in size?

3) Beyond assumptions of simple models

1. No immigration or emigration

 $\mathbf{N}_{t+1} = \mathbf{N}_t + \mathbf{B} - \mathbf{D} + \mathbf{I} - \mathbf{E}$ How much will these contribute?

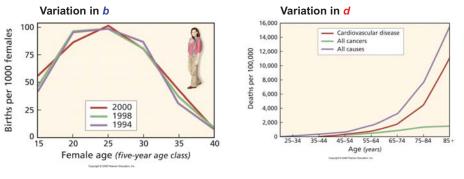
Metapopulation: a set of small populations linked by migration

the "rescue effect"

3) Beyond assumptions of simple models

Why are metapopulations

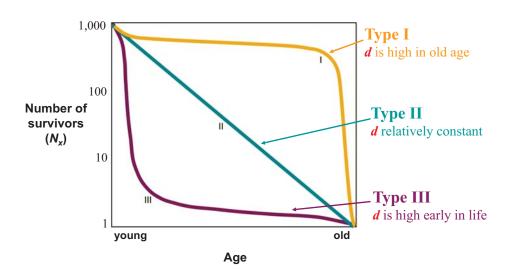
significant for


conservation?

Metapopulations are dynamic – repeated local extinction and recolonization

3) Beyond assumptions of simple models

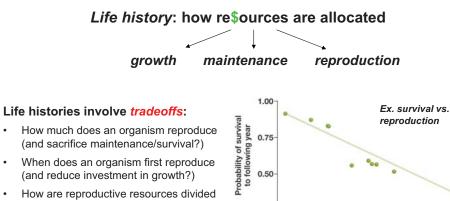
- **X** 1. No immigration or emigration
- X 2. All individuals contribute equally to population growth



- Birth (b) and death (d) rates can vary with:
 - age
 - stage (of development)
 - body size
 - · social status, etc.

3) Beyond assumptions of simple models

Survivorship curves


> how d (probability of death) changes with age

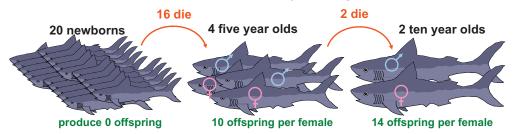
Q: What would an ideal organism be able to do?

(A: live forever and reproduce at an infinite rate)

but...re\$ources are *always* limited \rightarrow organisms cannot be ideal

0.25

٠ When does an organism first reproduce (and reduce investment in growth?)


٠

How are reproductive resources divided . among offspring (affecting r_{max})?

How does consideration of life histories affect conservation?

4) How are life history tradeoffs optimized?

• incorporate how b and d vary among individuals

survivorship (I_x) – proportion of <u>original</u> cohort surviving to start of age x **fecundity** (m_x) – average # of female offspring per female in age group x

	age (x)	survivorship (l _x)	fecundity (m _x
Life table: summary of age-specific birth and death			

4) How are life history tradeoffs optimized?

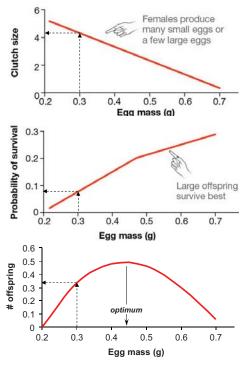
Ex.

5

Clutch size (average number of eggs laid)

Given an allocation of re\$ources to reproduction, females could make:

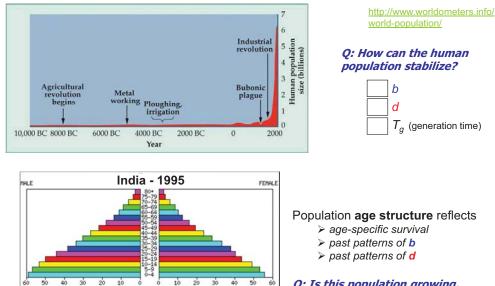
eggs



4) How are life history tradeoffs optimized?

Why life tables are useful

- can refine predictions about population growth (*b* and *d* vary)
- · can see how selection will act at different ages or stages
- can identify factors that make a population vulnerable to extinction


x	l _x	m _x	<i>l_x</i> * <i>m_x</i>
age	survivorship	fecundity	female offspring per female
0	1.00	0	0.0
5	0.20	5	1.0
10	0.10	7	0.7
15	0.05	2	0.1
20	0.01	0	0.0

Is this population growing or shrinking? $\rightarrow R_0 > 1$ Which age is contributing the most to population growth? Where should conservation efforts be focused?

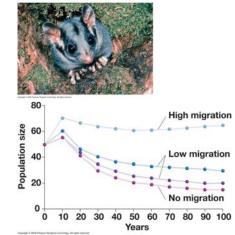
"net replacement"

5) Practical applications of life tables Ex1: Human population growth

Q: Is this population growing, shrinking or stable?

Sep 2013: 7.2 billion

: 3.6 billion


?

5) Practical applications Ex2: Population Viability Analysis (PVA)

How do different parameters affect future N?

- age-specific fecundity and survival
- migration, inbreeding and genetic drift
- demographic and environmental stochasticity

(a) Leadbeater's possum

North Atlantic right whale

~300 remaining collisions with ships entanglement in fishing gears extinction within 200 years

Population viability:

↓ survival (from 50 to 15 years)
↓ fecundity (from 5 to 1

calf/female)

➢ need to save just 2 adult females/yr to reverse trend

5) Practical applications of life tables

Population (in millions)

ource: U.S. Census Bureau, International Data Base.

Ex3: Why do organisms senesce (why doesn't evolution select for immortality)?

	res by by age	0				by age	/ age 2 e 7			
	Age	Survival	Fecundity	RS		Age	Survival	Fecundity	RS	
	x	lx	mx	lx • mx		x	lx	mx	lx • mx	
	0	1	0	0		0	1	0	0	
	1	0.75	0	0		1	0.75	0	0	
	2	0.56	0	0	mature >	2	0.56	0.8	0.448	 to start
mature >	3	0.42	0.8	0.336		3	0.42	0.8	0.336	reproducing
	4	0.32	0.8	0.256		4	0.32	0.8	0.256	one year earlie
	5	0.24	0.8	0.192		5	0.24	0.8	0.192	
	6	0.18	0.8	0.144		6	0.18	0.8	0.144	
	7	0.14	0.8	0.112	dead >	7	0	0	0	sacrifice 4
	8	0.11	0.8	0.088						> years of late
	9	0.08	0.8	0.064						reproduction
	10	0.06	0.8	0.048						
dead >	11	0	0	0						
		Lifetime F	RS ("Ro") =	1.24			Lifetime	RS ("Ro") =	1.38	
Generation time ("Tg") = Rate of increase ("r") =		eneration ti	me ("Tg") =	5.16		0	eneration ti	me ("Tg") =	3.45	
		0.042			Rate of incr	ease ("r") =	0.092			

Q: It pays to reproduce early, for two reasons. What are they?

	R _o	r	
genotype 2	11	2.2	
genotype 1		2.2	