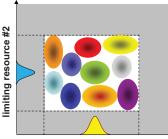
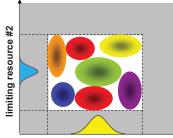

Part II. How communities & ecosystems work

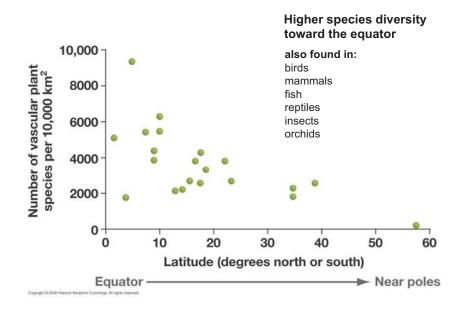
- Unit 4: What are the outcomes of species interactions?
- Unit 5: What factors control species diversity in communities?



Q: What determines the number that "fit"?

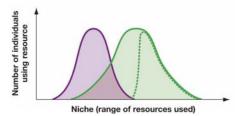

Part II. How communities & ecosystems work

- Unit 4: What are the outcomes of species interactions?
- Unit 5: What factors control species diversity in communities? **1. Niche sizes**



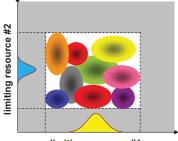
limiting resource #1

limiting resource #1 Q: What determines the number that "fit"?

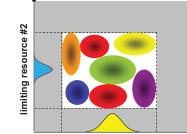

Part II. How communities & ecosystems work

Part II. How communities & ecosystems work

- Unit 4: What are the outcomes of species interactions?
- Unit 5: What factors control species diversity in communities?
 - 1. Niche sizes
 - 2. Niche partitioning

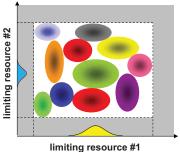


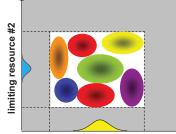
limiting resource #1 Q: What determines the number that "fit"?


Part II. How communities & ecosystems work

- Unit 4: What are the outcomes of species interactions?
- Unit 5: What factors control species diversity in communities?
 - 1. Niche sizes
 - 2. Niche partitioning

limiting resource #1



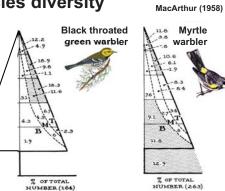

limiting resource #1 Q: What determines the number that "fit"?

Part II. How communities & ecosystems work

- Unit 4: What are the outcomes of species interactions?
- Unit 5: What factors control species diversity in communities?
 - 1. Niche sizes
 - 2. Niche partitioning
 - 3. Habitat heterogeneity

limiting resource #1 Q: What determines the number that "fit"?

Explaining patterns of species diversity


3. Habitat heterogeneity can increase the number of niches

for animals:

- · diversity of consumables
- · complexity of physical structure

for plants:

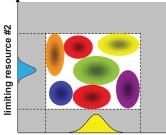
- diversity of physical factors (pH, light, etc.)
- · diversity of limiting nutrients (that limit different species)

OF

% of total NUMBER (263) OF OBSERVATIONS

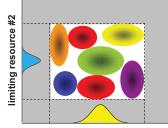
Myrtle

warbler



Part II. How communities & ecosystems work

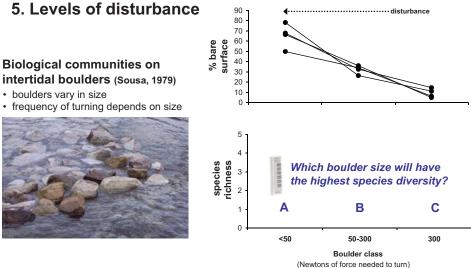
- Unit 4: What are the outcomes of species interactions?
- Unit 5: What factors control species diversity in communities?
 - 1. Niche sizes
 - 2. Niche partitioning
 - 3. Habitat heterogeneity
 - 4. Indirect effects



limiting resource #1 Q: What determines the number that "fit"?

Part II. How communities & ecosystems work

- Unit 4: What are the outcomes of species interactions?
- Unit 5: What factors control species diversity in communities?
 - 1. Niche sizes
 - 2. Niche partitioning
 - 3. Habitat heterogeneity
 - 4. Indirect effects
 - 5. Disturbance


limiting resource #1 Q: What determines the number that "fit"?

Succession

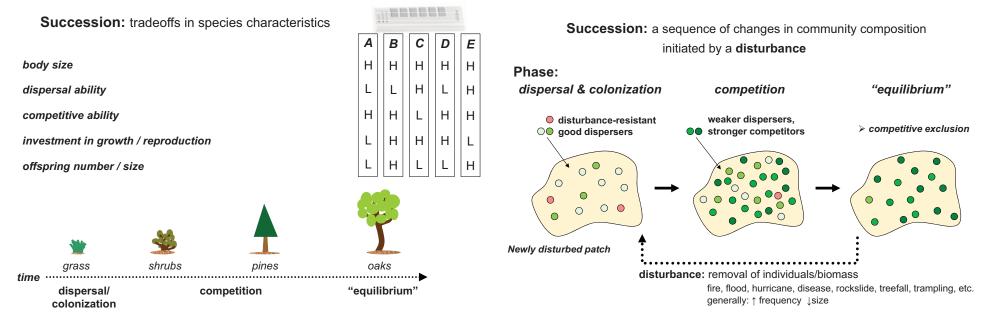
2° succession: disturbed substrate (ex. old fields)

Explaining patterns of species diversity

Succession

mid-

succ.

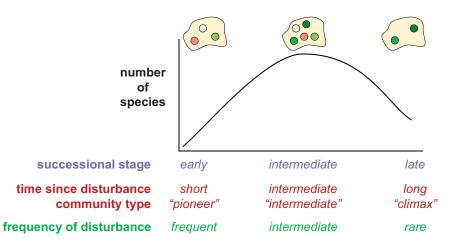

late-

succ.

climax

- 1° succession: **new substrate** created by geological event (ex. sand dunes, lava flows, rocks scoured by glaciers, etc.)
- Which species are the... • best colonizers? • best competitors?
- Pioneer Intermediate Climax community communities community Exposed rocks Lichens Grasses Aspen White spruce Mosses Herbs Black spruce Balsam fir Shrubs Jack pine Paper birch Tree seedings time

Explaining patterns of species diversity



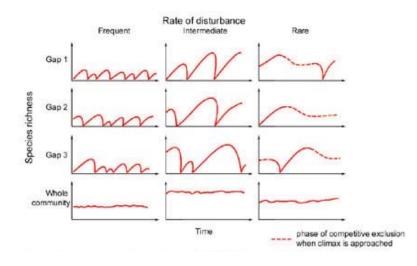
Explaining patterns of species diversity

Highest diversity expected... Q1

Q1: When during **succession?** Q2: At what time after **disturbance?**

Q3: Under what disturbance level?

Explaining patterns of species diversity □ Gap "Shifting mosaic" model of succession □ dap • periodic, small-scale disturbance across a landscape □ dap • patches are at different successional stages • dap frequent intermediate rare • dap • da


Explaining patterns of species diversity

So, why does intermediate disturbance produce greater diversity? 1. intermediate stages of succession are *more common*

2. overall biodiversity is the sum across all patches

Explaining patterns of species diversity

Summing diversity over a "shifting mosaic"

Implications for conservation: how to protect and restore biodiversity?

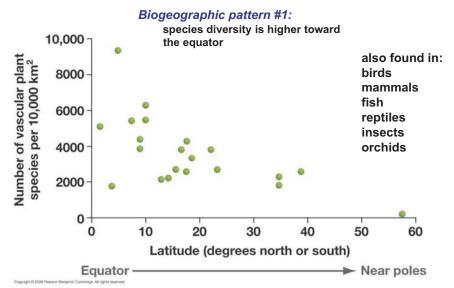
By protecting natural processes that promote diversity

1. reintroduce natural disturbance regimes

- promotes succession
- can promote diversity

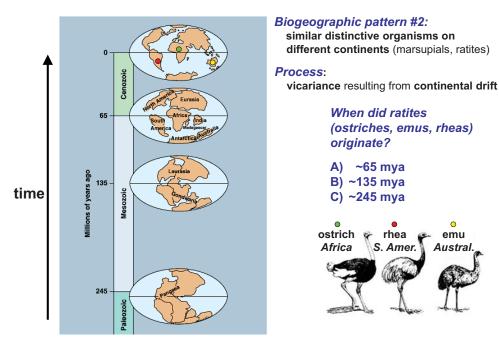
2. protect/reintroduce keystone species

- predators
- mutualists
- ecosystem "engineers"


Part II. How communities & ecosystems work

- A. Species interactions
- B. Factors that influence local species diversity
 - 1. Niche size
 - 2. Niche partitioning
 - 3. Habitat heterogeneity
 - 4. Indirect effects
 - 5. Disturbance

- C. Factors that influence species diversity on a larger scale
 - Why are particular species found in particular parts of the world?
 - Why do some areas show higher biodiversity than others?


Biogeography — geographic patterns of species diversity and distribution

What can explain latitudinal patterns?

Biogeography — reflects *dispersal*, *isolation*, and *speciation*

As more species accumulate on an island... ... the colonization rate decreases ...the extinction rate increases

Rates of immigration or extinctic

Immigration -

- good dispersers arrive quickly
- poor dispersers arrive slowly
- the island saturates with species that have already arrived

Extinction -

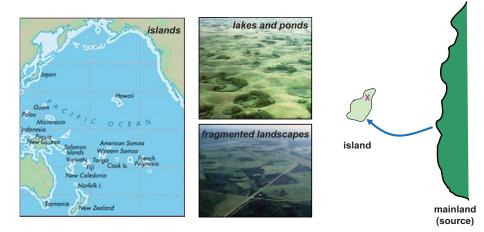
- competition intensifies as niches fill
- · smaller populations at greater risk of extinction

Why does the equilibrium number of species vary among "islands"? • What affects extinction? What affects colonization?

Equilibrium number Number of species on island

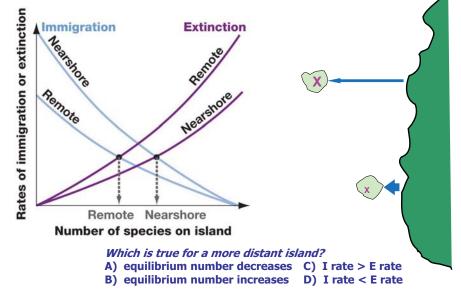
emu

Austral.

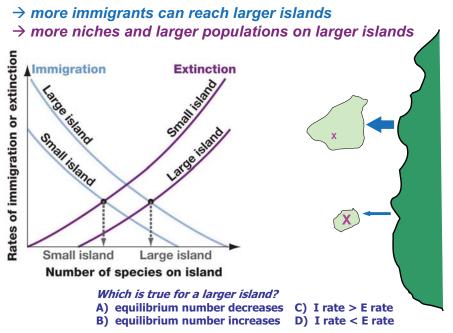

Biogeography — reflects dispersal, isolation, and speciation

Biogeographic pattern #3:

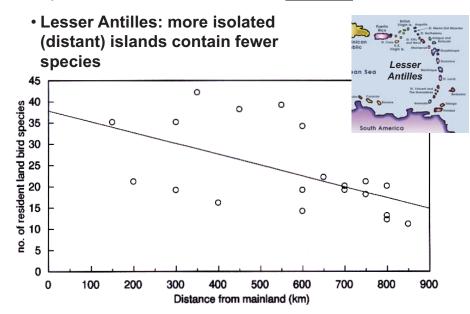
islands have fewer species than equivalent areas of mainland

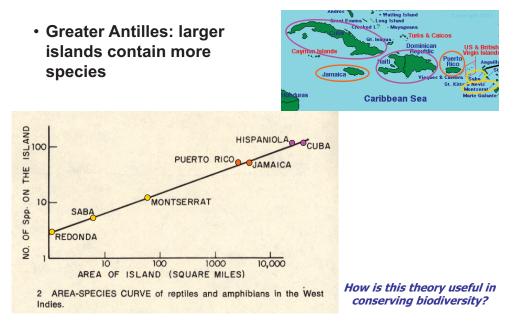

"Island Biogeography Theory"

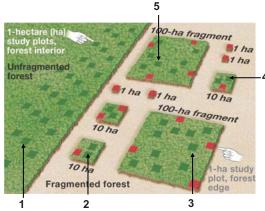
•predicts equilibrium balance between colonization and local extinction



Number of species should decrease with isolation...


 \rightarrow fewer species can disperse to more distant islands → "rescue effect" is less likely on more distant islands


Number of species should increase with island size...


Does species number decrease with distance from source?

Does species number increase with island size?

Island Biogeography Theory and Conservation Biology Q: How do fragment size and isolation influence biodiversity?

Manaus, Brazil

- in 1979, ranchers were convinced to pattern their fragmentation of rainforest when clearcutting
- changes in species diversity and composition have been measured ever since in nonedge (green) and edge (red) plots

A) 1, 2

B) 2, 1

C) 3, 2

D) 5, 4

E) 1, 4

Q: Using Island Biogeography theory, which plots are expected to have the <u>highest</u> and <u>lowest</u> species diversity, respectively?