
Part III. Conserving biodiversity

- I. How populations work
- II. How communities & ecosystems work

III. Origins of biodiversity

- How do species arise?
- How are phylogenies used to organize diversity?
- Surveys of biodiversity and evolutionary trends

 Unit 8. Prokaryotes and Protists (single-celled organisms)
 Unit 9. Green plants and Fungi
 Unit 10. Animals

Some general characteristics of the three domains of life

Bacteria

Bacteria & Archaea

- Unicellular
- Prokaryotes (no membrane-bound nucleus) Generally smaller than Eukaryotic cells

Domain Bacteria

Peptidoglycan cell walls Plasma membrane similar to Eukar Unique ribosomes Unique RNA Polymerase

Domain Archaea

Polysaccharide cell walls similar to Eukarya

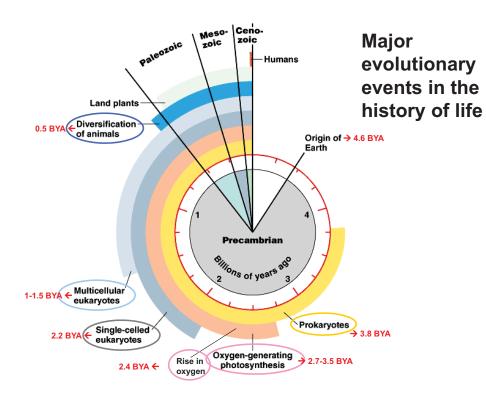
- Unique plasma membrane
- Ribosomes similar to Eukarya

RNA polymerase similar to Eukarya

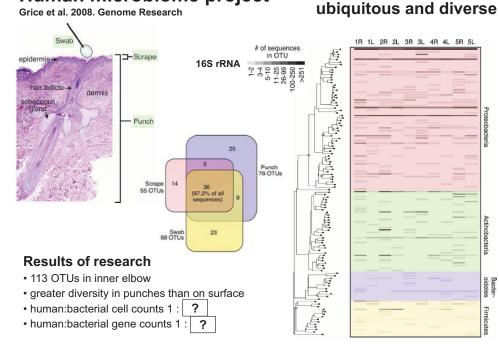
a Common ancestor of all species living today

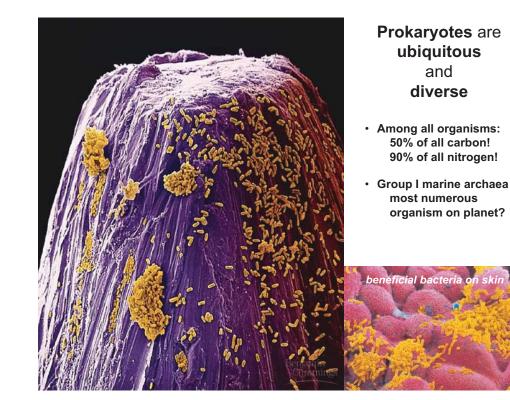
Fukarya

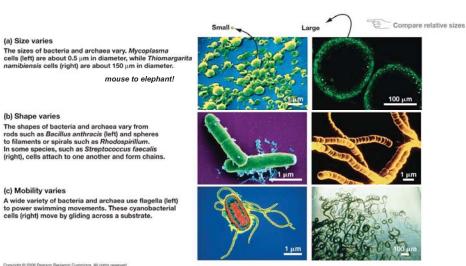
Archaea


Q: Can you map the origin of these traits, using parsimony?

Earth's earliest organisms


- · early atmosphere was anoxic, hostile to oxygen-based metabolism
- "oxygen revolution"
 - cyanobacteria produce $\rm O_2$ as by product of photosynthesis

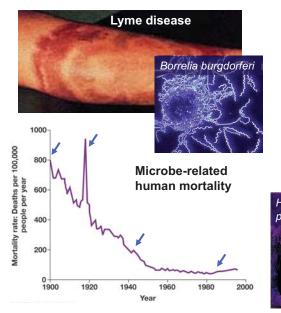


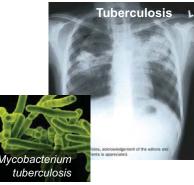

Human microbiome project

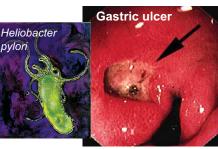
Prokaryotes are

1. Morphological diversity in prokaryotes

Copyright @ 2008 Pearson Benjamin Cummings. All rights reserved.

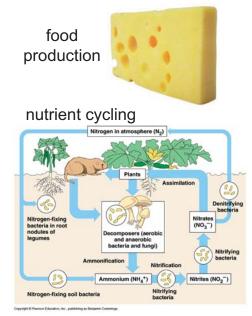

(a) Size varies

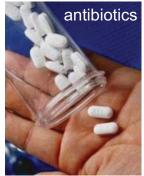

(b) Shape varies


(c) Mobility varies

2. Ecological diversity in bacteria

Some are pathogenic...





2. Ecological diversity in bacteria

Some provide services...

2. Ecological diversity in bacteria

Some are extremophiles...

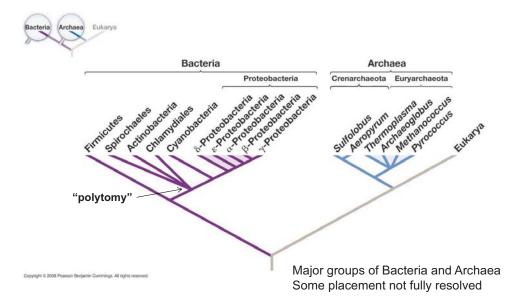
- halophiles (e.g., salt flats)
- anaerobes (e.g. pluff mud)
- thermophiles (e.g., hydrothermal vents)

bacterium from Yellowstone hot spring *Taq* polymerase for PCR (polymerase chain reaction) revolutionized the study of genetics

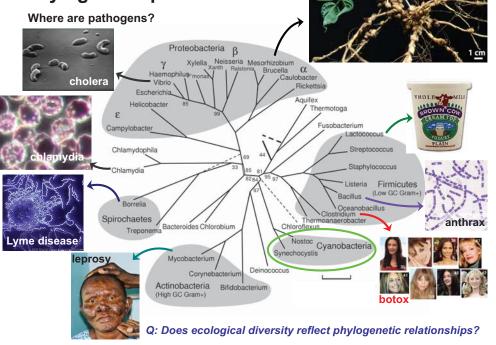
Q: Why do astrobiologists study extremophiles?

→ ATP)

of energy (-


sources

3. Metabolic diversity: sources of energy and carbon


	sources of carbon (- Autotrophy Synthesize own high potential energy organic compounds from CO2, CH4, other inorganic sources	 organic compounds) Heterotrophs Use organic compounds with high potential energy produced by other organisms
Light (phototrophs)	Photoautotrophs e.g. Cyanobacteria use photosynthesis to produce ATP, and fix CO2 through the Calvin cycle.	Photoheterotrophs e.g. Heliobacteria use photosynthesis to produce ATP, and absorb organic compounds from the environment.
↑nrg organic molecules (organotrophs)	Chemoorganoautotrophs e.g. <i>Clostridium</i> ferments glucose to produce ATP, and fixes CO2 through the acetyl-CoA pathway.	Chemoorganoheterotrophs e.g. <i>E. coli</i> uses fermentation or respiration of glucose to produce ATP, and absorbs organic compounds from the environment.
↑nrg inorganic molecules (lithotrophs)	Chemolithotrophs e.g. Nitrifying bacteria use respiration to produce ATP (using NH3 as electron donor), and fix CO2 through the Calvin cycle.	Chemolithotrophic heterotrophs e.g. Beggiatoa uses respiration to produce ATP (H2S as electron donor), and absorbs organic compounds from the environment.

metabolic diversity \rightarrow ecological diversity

4. Does ecological diversity reflect phylogeny?

4. Phylogenetic pattern

4. Phylogenetic pattern in Bacteria

Photosynthesizers

e.g. Cyanobacteria (Misnomer: "blue-green algae")

- species-poor (~ 80) but extremely abundant
- all photosynthetic, some colonial
- early Earth's atmosphere was anoxic (CO₂, CO, H₂, H₂0, N₂?)
- "oxygen revolution: cyanobacteria added O₂ to atmosphere

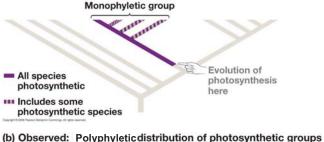
symbioses with fungi

(like lichens)

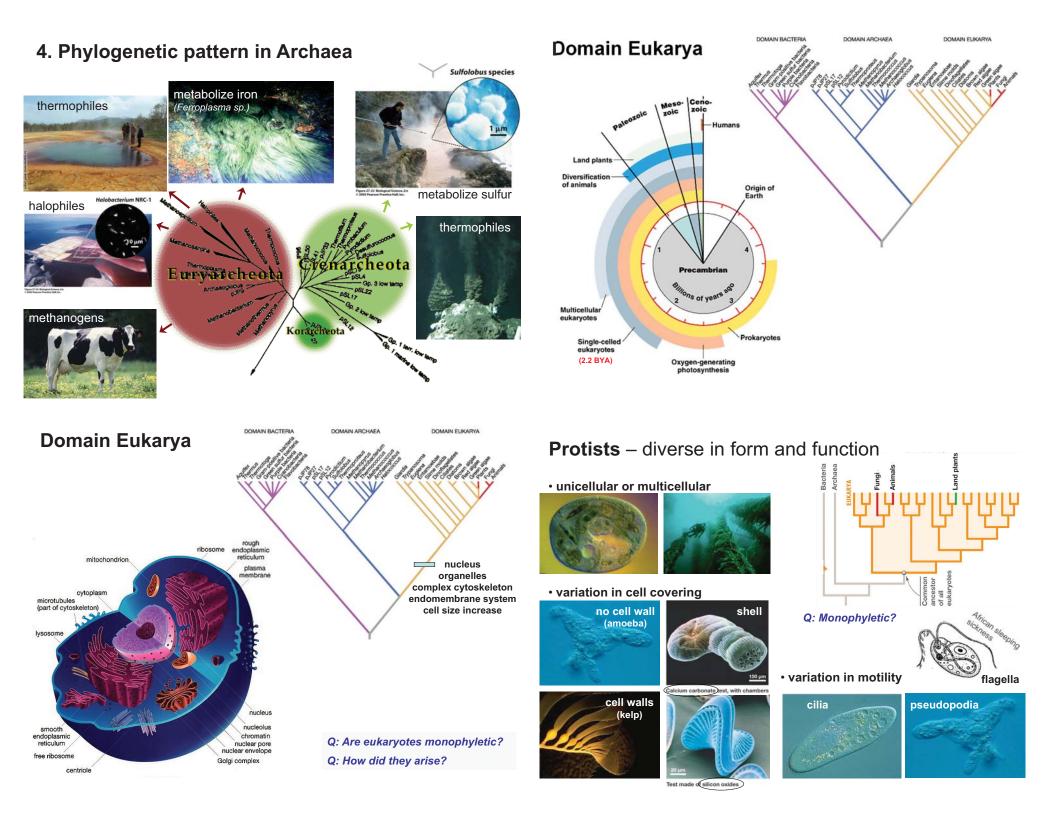
3.5 billion year old fossilized filamentous "cyanobacterium"

stromatolites: earliest communities

(cyanobacteria are the 1° producers)

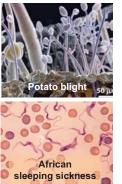

Nostoc si

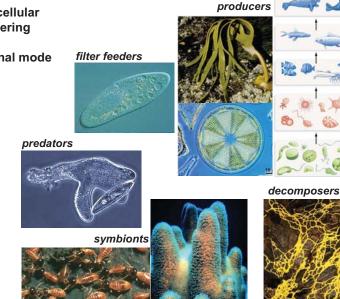
4. Phylogenetic pattern in Bacteria


Where are photosynthesizers?

Q: Does metabolic diversity reflect phylogenetic pattern?

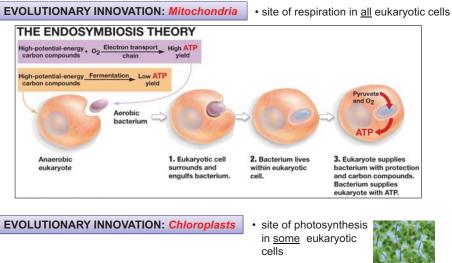
(a) Expected: Monophyletic distribution of photosynthetic groups


P.Pro Conjugation "Lateral gene transfer" Chl-a & b 7 other chlorophylls!



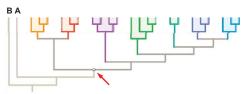
Protists – diverse and paraphyletic

- unicellular or multicellular
- · variation in cell covering
- variation in motility
- variation in nutritional mode photosynthesis absorption ingestion (*new!*)



primary

1. How did eukaryotes arise? → Organelles


According to endosymbiotic theory:

Q: How many membranes should surround a mitochondrion? Chloroplast? Q: What should mitochondrial or chloroplast DNA be most like?

1. How did eukaryotes arise? → Internal membranes

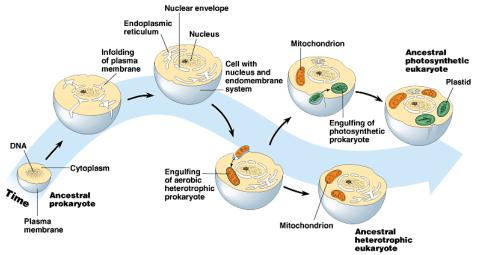
Inferred common ancestor of all modern eukaryotes:

- unicellular
- membrane-bound nucleus
- cytoskeleton
- no cell wall
- mitochondria

EVOLUTIONARY INNOVATION: Endomembrane system

↑ SA:V ratio

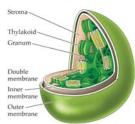
Allows cells to ↑ size


Allows for specialized compartments

- Endoplasmic Reticulum
- Golgi Complex
- Vacuoles
- Nuclear Membrane

1. How did eukaryotes arise?

> membrane infolding and acquisition of organelles

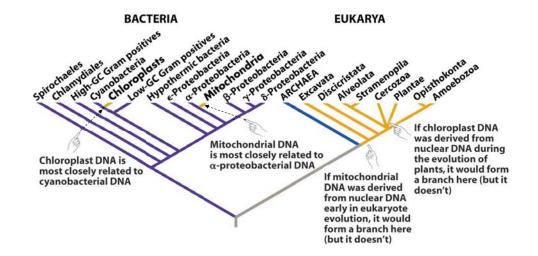


Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

1. How did eukaryotes arise?

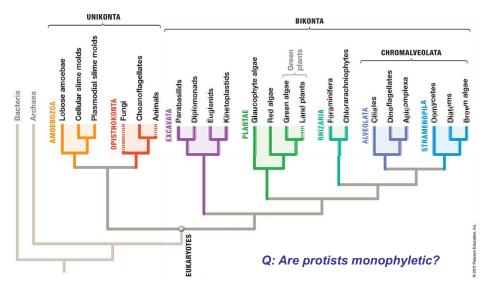
What is the evidence for Endosymbiosis Theory?

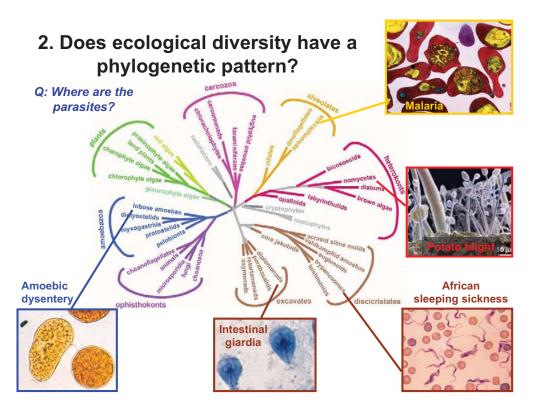
- a. Traits shared by bacteria and mitochondria/chloroplasts:
 - Circular DNA
 - Divide by fission
 - Small size
 - Distinct ribosomes

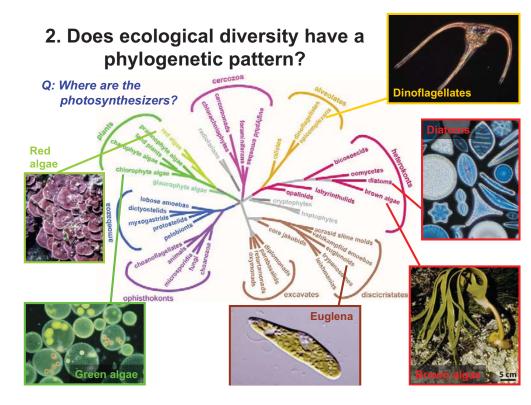


- b. Double membranes
- c. Morphological similarity to cyanobacteria
- d. Analogous examples of protists with bacterial endosymbionts
- e. Molecular phylogeny: where do organelles fit on the tree?

1. How did eukaryotes arise?

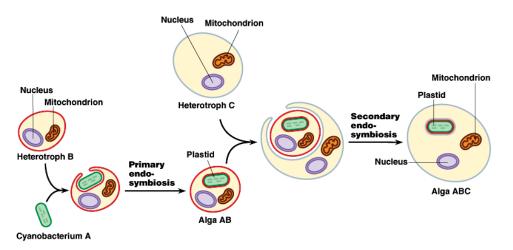

What is the evidence for Endosymbiosis Theory?


e. Molecular phylogeny: where do organelles fit on the tree?



2. Phylogenetic and ecological diversity of protists

<u>Seven</u> major, morphologically distinct lineages ("protists" are solid lines) Relationships among groups not completely resolved



3. How did polyphyly in photosynthesis arise?

> spread of photosynthesis through secondary endosymbiosis (!)

According to secondary endosymbiosis:

Q: How many membranes should surround a 2° derived chloroplast?

Q: What should the chloroplast DNA be most like?

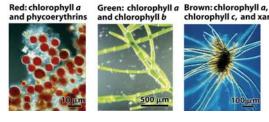
2. Does ecological diversity have a phylogenetic pattern?

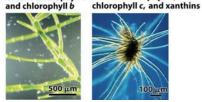
Q: What are the photosynthetic "algae"?

PLANTAE

Green Algae - unicellular, colonial, multicellular Red Algae - most are multicellular Glaucophyte Algae - unicellular or colonial

STRAMENOPILA

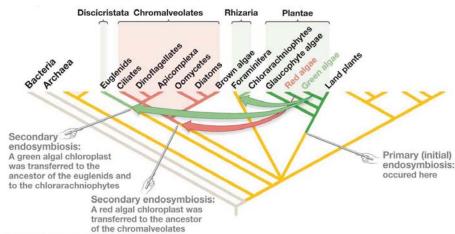

Brown Algae - multicellular Diatoms - unicellular or chains


ALVEOLATA

Dinoflagellates - unicellular or colonial

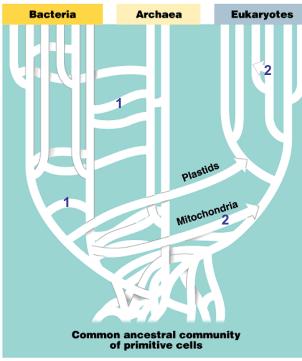
EXCAVATA

Euglenids - unicellular, also ingest food


Recall: monopara-

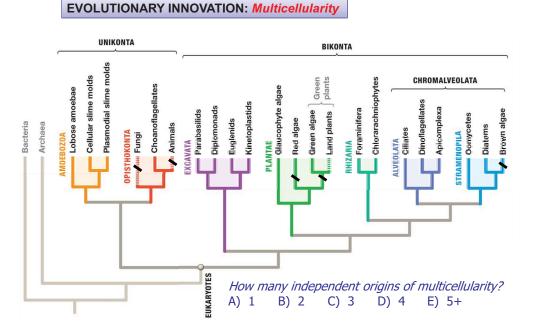
"Algae" are polyphyletic

3. How did polyphyly in photosynthesis arise?


Multiple independent origins?

chloroplasts with >2 membranes in some protist groups \rightarrow secondary endosymbiosis – lateral transmission of chloroplasts

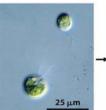
Copyright © 2008 Pearson Benjamin Cummings, All rights reserv


Tree of life or web of life?

Q: What two processes contribute to these cross-taxon bridges?

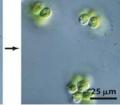
Copyright © Pearson Education, Inc., publishing as Benjamin Cummings

4. How did large, complex eukaryotes arise?



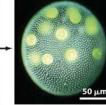
4. How did large, complex eukaryotes arise?

EVOLUTIONARY INNOVATION: Multicellularity


- cells become differentiated (► division of labor)
- cells become interdependent

Rare examples of cell specialization within bacterial colonies (δ -proteobacteria) More common examples of cell specialization in protist colonies


Chlamydomonas is

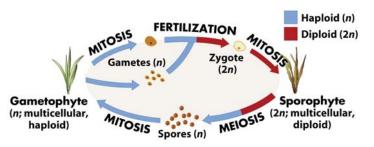

unicellular.

Gonium forms small

colonies.

Pandorina forms large colonies.

Volvox is multicellular.


4. How did sexual reproduction evolve?

EVOLUTIONARY INNOVATION: Meiosis

 haploidy prepares a cell genome for recombination with another genome haploid <u>fertilization</u> diploid <u>meiosis</u> haploid

• dominant stage(s) in life cycle could be haploid or diploid or both

alternation of generations (some eukaryotes) – prominent multicellular haploid *and* diploid stages

