7. INVERTEBRATE PARASITES

"Only kings, editors, and people with tapeworm have the right to use the editorial 'we'."

--Mark Twain

MAJOR TAXA

Ph. Nematoda (parasitic groups)

Ascarids (roundworms), whipworms, hookworms, filarial worms, guinea worms

Ph. Platyhelminthes (parasitic classes)

Cl. Cestoda (tapeworms)

Cl. Monogenea

Cl. Trematoda (digenean flukes) Ph. Annelida (parasitic subclass)

Subcl. Hirudinea (leeches)

Ph. Nematomorpha Ph. Acanthocephala

? Myxozoa

MAJOR THEMES

Human ecology

Invertebrates in history Mechanisms of attachment

Body symmetry High fecundity

Degenerate digestive systems

Complex life cycles

Tradeoff: replication vs. transmission

Asexual vs. sexual replication Intermediate vs. definitive hosts

Changes in host behavior

Homoplasy of parasitism across phyla

<u>Recap</u>: Worms, a story of bilateral symmetry, body elongation, muscle antagonism by hydrostatic skeletons, cephalization, and functional specialization of body cavities

OUTLINE

- 1) Invertebrate parasites in human ecology: examples from several phyla
- 2) Parasitism as a whole-phylum characteristic
- 3) Common adaptations for a parasitic lifestyle
- 4) The role of intermediate and final hosts
- 5) Parasitic control of host behaviors

GOALS

After studying from lecture notes and the associated reading, you should be able to:

- Describe the prevalence and importance of invertebrate parasites in human populations
- Describe common adaptations to parasitic lifestyles related to attachment, digestive systems, body symmetry, and fecundity among parasitic members of different phyla
- Explain why parasite replication and transmission may sometimes involve a tradeoff, and why this tradeoff can affect the severity (virulence) of parasite-caused diseases
- Describe differences in body plans, nutrition, and reproduction among parasitic taxa
- Describe relationships among leech nutrition, internal anatomy, and locomotion
- Describe variation in life-cycle complexity, and why nematomorph life cycles are unique
- Explain the roles of intermediate hosts and vectors in parasite transmission
- Describe effects of some parasites on host behavior, and benefits to the parasite
- Distinguish between a parasite and the disease it causes

REFERENCES

Curtis, L. A. (1987). Vertical distribution of an estuarine snail altered by a parasite. Science 235:1511-1513.

Moore, J. (1984). Parasites that change the behavior of their host. Scientific American 250:108-115.

Vance, S. A. (1996). Morphological and behavioral sex reversal in mermithid-infected mayflies. Proceedings of the Royal Society of London B 263:907-912.

http://www.biosci.ohio-state.edu/~parasite/life_cycles.html