16. History of invertebrate diversity and phylogenetic review

"Time is nature's way of keeping everything from happening all at once" --Woody Allen

MAJOR THEMES

Characters used in cladistic analysis
Controversy in phylogenetic relationships
Likelihood of fossilization
The "Cambrian Explosion"

"Problematic" taxa and the Burgess Shale Historical patterns of diversity Decimation and radiation Mass extinction

<u>Recap</u>: >20 phyla in 10 weeks: diverse evolutionary solutions to common functional problems

OUTLINE

History of diversity: patterns and processes in the evolution and extinction of taxa

- What are the major types of evidence for phylogenetic relationships?
- When did major body plans (phyla) arise?
- What are patterns of change at lower taxonomic levels?

GOALS

After studying from lecture notes and the associated reading, you should be able to:

- Explain why fossil evidence of evolutionary relationships is useful for relatively few taxa
- Explain how morphological characters of living animals can be used to reconstruct phylogenetic relationships
- List some larval and adult traits that have been used to discern evolutionary relationships, and describe a case where larval and adult traits conflict
- Describe one benefit and one possible pitfall of the use of molecular characters
- Describe some examples where recent molecular phylogenetic reconstructions conflict with conventional wisdom about phylogenetic relationships
- Describe when various phyla first appeared in the fossil record, and explain why such a pattern would hinder our ability to resolve evolutionary relationships
- List some major dates in the evolutionary history of animal phyla
- Describe a hypothesis for how animal phyla may have been present well before they appeared in the "Cambrian explosion"
- Describe some animals of the Burgess Shale and their implications for the history of diversity
- Describe patterns of change in particular phyla, and the role of extinction in these changes

REFERENCES

Aguinaldo et al. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489-493.

Conway Morris, S (2000). Nipping the Cambrian "explosion" in the bud? Bioessays 22:1053-1056.

Dunn et al. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature doi:10.1038/nature06614

Gould, SJ (1989). Wonderful Life. WW Norton & Company: New York.

Halanych KM et al (1995). Evidence that the lophophorates are protostome animals. Science 267:1641-3.

Holmes, B (1997). When we were worms. New Scientist 156 (2104), pp 30-35.

Thomas, ALR (1997). The breath of life--did increased oxygen levels trigger the Cambrian Explosion? Trends in Ecology and Evolution 12:44-5.

Wray GA, Levinton JS, Shapiro L (1996). Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274: 568-573.