
Sexual reproduction and larval biology

dioecy

0° Q

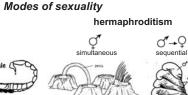
Fio. 1. A collage of some invertebrate larval forms showing variations in shapes and patterns of ciliation. Larvae are not carsen to the same scale. Larval forms were reformen or modified from references cited: A protobanch bivyte (after Dev.; 1959), B. ophiuroli, anofending (after Crave, 1959), C. gaturopod veiger (after Garatang, 1923); D. polytheate netochnete (after Stake, 1973s); E. echinois platess (after Stratamann, 1971); F. articulate brachiogo (after Fervier), 1960); D. phorona lationoto (after Stake, 1954); H. atvonot (after Stavak, 1975); J. principate branching (after Develod, 1940b); K. spinuchid plaquophera faith Flagerstan, 1972; L. cinidaria planula (Entite, persona) downation, M. and Bonar, 1971b; C. and C. State and State and State and State State and State State and Bonar, 1970; Optimize Result, 1964b; R. holenburoid anticularia (after Stathmann, 1971); S. ophiuroid plotesu (after Strath-man, 1971); S. ophiuroid plotesu (after Stathmann, 1971); S. ophiuroid plotesu (after Strath-mann, 1971); S. ophiuroid plotesu (after Strathmann, 1971); S. ophiuroid plotesu (after Strath-mann, 1971); S. ophiuroid plotesu (after Strathmann, 1971); S. ophiuroid plotesu (after Strath-mann, 1971); S. ophiuroid plotesu (after Strathmann, 1971); S. ophiuroid plotesu (after Strath-mann, 1971); S. ophiuroid plotesu (after Strathmann, 1971); S. ophiuroid plotesu (after Strath-mann, 1971); S. ophiuroid plotesu (after Strathmann, 1971); S. ophiuroid plotesu (after Strath-mann, 1971); S. ophiuroid plotesu (after Strathmann, 1971); S. ophiuroid plot

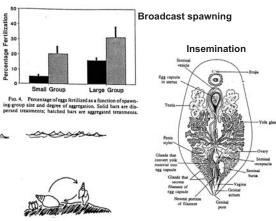
Modes of Sexual Reproduction

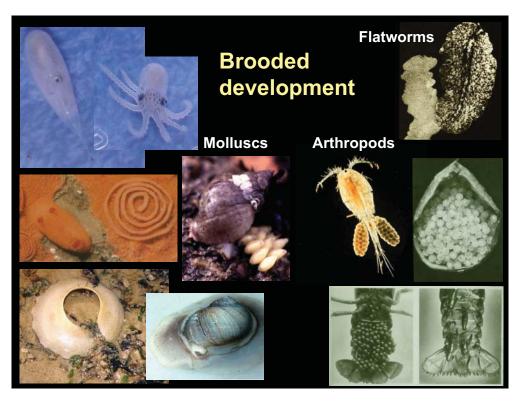
	Sexes1	Broadca	st Spawn?	Brood?
Porifera	d, H		Yes	+++
Cnidaria	D, h		Yes ³	+++
Ctenophora	d, H		Yes	+
Platyhelminthes	d, H	C		+
Nemertea	D, h	0.00	Yes	+
Nematoda	D, h	C		++
Annel. Polychaeta	D, h	11525	Yes	++
Sipuncula	D, h		Yes	+
Mollusca	D, H	C4	Yes	++
Arthro. Crustacea	D, H	C		+++
Hexapoda	D, h	C		+++
Phoronida	d, H	1972	Yes	++
Bryozoa	d, H		Yes3	+++
Brachiopoda	D, h		Yes ³	++
Echinod.	D, h		Yes	++
Hemichordata	D		Yes	-
Urochordata	D, h		Yes	++

³ toks. D - utcosts, 11 - intrinsion, number and the set of the set of

Modes of habitat use

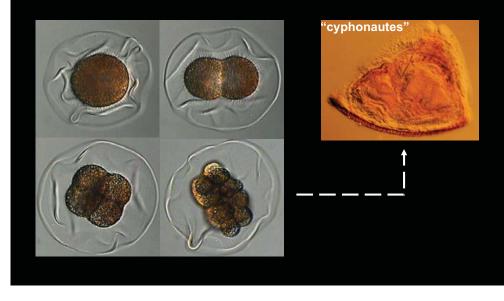


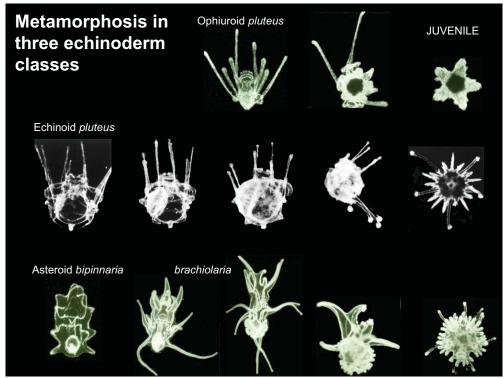

"holobenthic"


andres

Small Group

Modes of fertilization


Animals are life cycles


"holopelagic"

mixed benthic-pelagic

10 30

Early development in...bryozoans

Presence of metamorphosis and typical larval forms

Polychaeta

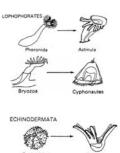
Polypla

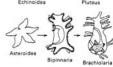
MOLLUSCA

TIT mont

D

Cirriped

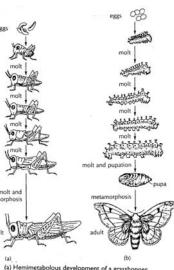

4. Young acorn bas

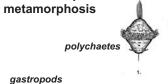

Metamorphosis?

Yes amphi

Porifera

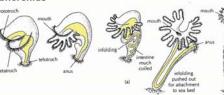
Typical larva





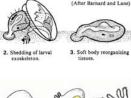
Direct and indirect development in terrestrial insects

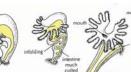
molt and metamorphosi

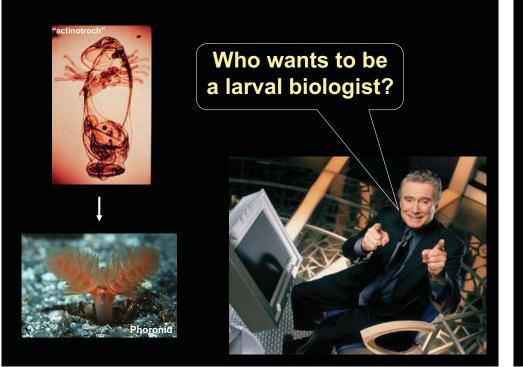


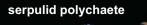
phoronids

1. Attached cyprid.

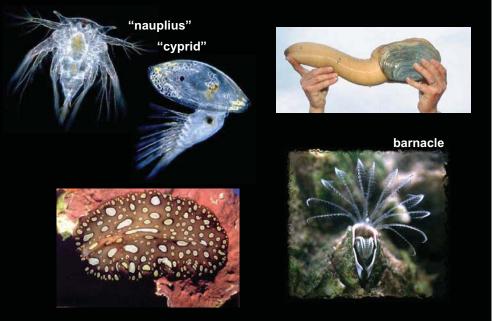


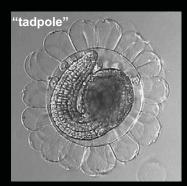




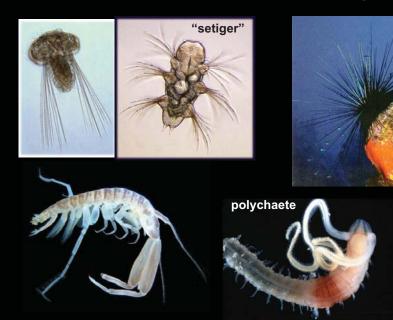


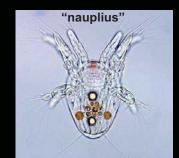
Who wants to be a larval biologist?


Who wants to be a larval biologist?

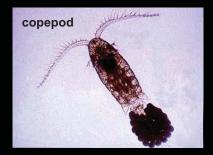


Who wants to be a larval biologist?





Who wants to be a larval biologist?



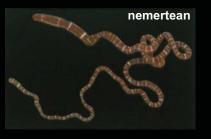
Who wants to be a larval biologist?

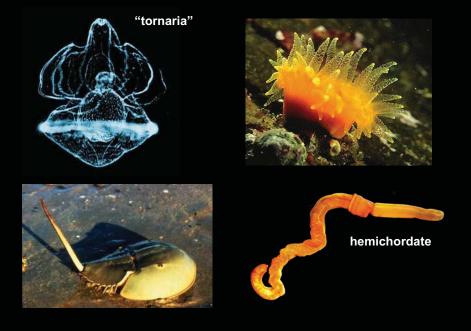
brachiopod

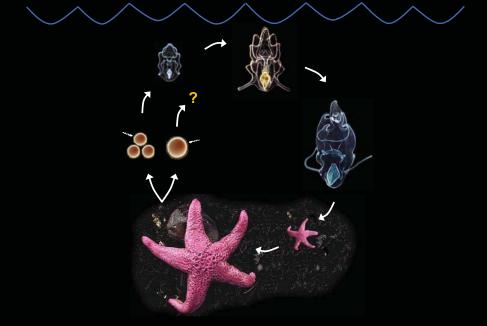
Who wants to be a larval biologist?

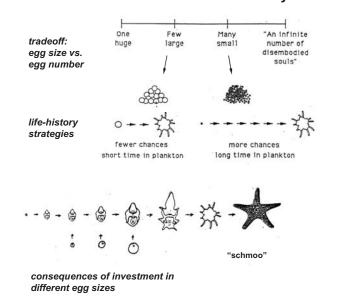
Who wants to be a larval biologist?

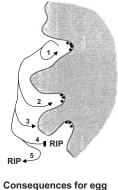


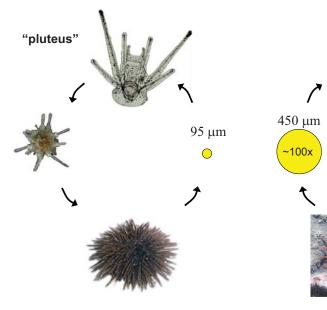


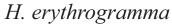

Who wants to be a larval biologist?






Animals are life cycles


Life-history evolution of marine invertebrates the "time-fecundity model"


Risks of time in the plankton

Consequences for egg size evolution of: • Food supply? • Predation risk? • Offshore currents?

Heliocidaris tuberculata

"schmoo"