Sexual reproduction and larval biology

Animals are life cycles

Fig. 1. A collage of some invertebrate larval forms showing variations in shapes and patterns of ciliation
 Larvae are Garang 1928); D (afer Garstang, 1928), D, polychate nect (as0), (1972); 1972); I, gastropod veliger (after Dawydof, 1940a); J, nemertean pilidium (after Dawydoff, 1940b); K, sipunculid pelagosphera (after Jägersten, 1972); L, cnidarian planula (Emlet, personal observation); M, enteropneust hemichordate, nonfeeding (after Burdon-Jones, 1952); N, enteropneust tornaria (after Strathmann and Bonar, 1976); O, entoproct (after Jägersten, 1972); P, inarticulate brachiopod (after Jägersten, 1972); Q, archeogastropod trochophore (after Kessel, 1964); R, holothuroid auricularia (after Strathmann, 1971); S, ophiuroid pluteus (after Strath mann, 1971).

Modes of Sexual Reproduction

	Sexes ${ }^{1}$	Broad	ast Spawn?	Brood? ${ }^{\text {2 }}$
Porifera	d, H		Yes ${ }^{3}$	+++
Cnidaria	D, h		Yes ${ }^{3}$	+++
Ctenophora	d, \mathbf{H}		Yes	+
Platyhelminthes	d, H	C		+
Nemertea	D, h		Yes	+
Nematoda	D, h	C		++
Annel. Polychaeta	D, h		Yes	++
Sipuncula	D, h		Yes	+
Mollusca	D, H	C^{4}	Yes	++
Arthro. Crustacea	D, H	C		+++
Hexapoda	D, h	C		+++
Phoronida	d, H		Yes ${ }^{3}$	++
Bryozoa	d, H		$\because \mathrm{Yes}^{3}$	++
Brachiopoda	D, h		Yes ${ }^{3}$	++
Echinod.	D, h		Yes	++
Hemichordata	D		Yes	-
Urochordata	D, h		Yes	++

${ }^{1}$ Sexes: $\mathrm{D}=$ dioecious, $\mathrm{H}=$ hermaphrodite, lower case = rare.
${ }^{2}$ Brooding: embryo development encapsulated or on adult body
${ }^{3}$ Typically or often only male spawns.
$\mathrm{C}=$ copulation (or other direct gamete exchange)
${ }^{4}$ All cephalopods, most gastropods.

Modes of habitat use

"holopelagic"
"holobenthic"

Modes of sexuality

Modes of fertilization

Fig. 4. Percentage of eggs fertilized as a function of spawn-ing-group size and degree of aggregation. Solid bars are dispersed treatments; hatched bars are aggregated treatments.

Broadcast spawning

Insemination

Early development in...bryozoans

Presence of metamorphosis and typical larval forms

molusca

	Metamorphosis?		Typical larva
Porifera		Yes	amphiblastula
Cnidaria		Yes	planula
Ctenophora		Yes	cydippid
Platyhelminthes		Yes	Muller's, cercariae
Nemertea		Yes	pilidium
Nematoda	No		
Nematomorpha		Yes	gordoiod
Acanthocephala		Yes	acanthor
Rotifera		Yes	
Annel. Polychaeta		Yes	trochophore
Sipuncula		Yes	trochophore
Mollusca		Yes	trochophore, veliger
Arthro. Crustacea Hexapoda		Yes	nauplius, zoea caterpillar,grub,maggot
Phoronida		Yes	actinotrocha
Bryozoa		Yes	cyphonautes, coronate
Brachiopoda		Yes	articulate larva
Kamptozoa		Yes	
Echinod. Oph,Ech		Yes	pluteus
Ast, Hol		Yes	bipinnaria; auricularia
Hemichordata		Yes	tornaria
Urochordata		Yes	tadpole
Chaetognatha	No		
Onychophora	No		
Gastrotricha	No.		
Kinorhyncha	No		
Loricifera		Yes	Higgins
Tardigrada	No		
Priapulida		Yes	Lorica

CHORDATA

Metamorphosis in three echinoderm classes

Echinoid pluteus

Asteroid bipinnaria

Some examples of metamorphosis

polychaetes

1.

barnacles

1. Attached cyprid.

Metamorphosis of acorn barnacle, Balanus amphitrite. (After Barnard and Lane)

2. Shedding of larval exoskeleton.

phoronids

metatroch

Direct and indirect development in terrestrial insects

(b)
(a)
(a) Hemimetabolous development of a grasshopper.
(b) Holometabolous development in the silkworm moth.

Who wants to be a larval biologist?

Who wants to be a larval biologist?

Who wants to be a larval biologist?

Who wants to be a larval biologist?

barnacle

Who wants to be a larval biologist?

Who wants to be a larval biologist?

Who wants to be a larval biologist?

Who wants to be a larval biologist?

brachiopod

Who wants to be a larval biologist?

Who wants to be a larval biologist?

Who wants to be a larval biologist?

Who wants to be a larval biologist?

hemichordate

Animals are life cycles

Life-history evolution of marine invertebrates

the "time-fecundity model"

life-history strategies
fewer chances
short time in plankton

more chances
long time in plankton
 $\begin{array}{lll}\dagger & \uparrow & \uparrow \\ 0 & 0 & \ominus\end{array}$ "schmoo"
consequences of investment in
different egg sizes

Risks of time in the plankton

Consequences for egg size evolution of:

- Food supply?
- Predation risk?
- Offshore currents?

Heliocidaris tuberculata
H. erythrogramma

