20. Physical biology--fluid forces on life at small and large scales

"What a drag it is getting cold." --Fuiman and Batty (1997)

MAJOR THEMES	Biological effects of temperature
Sex and the single cell	Measures of performance
Inertial and viscous forces	Cilia and flagella
The Reynolds number	Life in wave-swept environments
Appendages useful at small scales	Drag, lift, and the acceleration reaction

<u>Recap</u>: Sexual reproduction; metamorphic transitions from larva to adult

OUTLINE

- 1) Sex and the single cell: sexual life cycles pass through a (small) single-cell stage
- 2) The Reynolds number: forces acting on animals as they move through fluids (water, air)
- 3) An unexpected biological consequence of temperature at small scales
- 4) Probabilities of urchin dislodgment in wave-swept environments

GOALS

After studying from lecture notes and the associated reading, you should be able to:

- Explain why sexual reproduction creates an important constraint for a life cycle
- Describe differences in physical realities experienced by large and small organisms
- Explain why "Re" is a useful measure of forces created by movement through a fluid
- Give some examples of Reynolds numbers for relevant organisms or body parts
- Explain why cilia and flagella are effective appendages at low Reynolds numbers
- Explain why the function of bristled appendages at small scales can violate our intuitions
- Explain why there are two potentially confounding effects of temperature at low Re
- Explain the experimental design used by Podolsky to distinguish these effects
- Explain why small-scale effects may also be relevant for much larger organisms
- Explain why the shingle urchin (*Colobocentrotus*) was originally thought to have a morphology better suited for its particular habitat
- Explain the basis of three different forces that could dislodge an organism from a wave-swept marine environment, and how Denny and Gaylord measured these forces
- Explain why the results of these measurements were surprising in light of their predictions
- Explain how they used their results to make predictions about the probability of dislodgment

REFERENCES

- Denny, M. and B. Gaylord (1996). Why the urchin lost its spines: hydrodynamic forces and survivorship in three echinoids. Journal of Experimental Biology 199: 717-729.
- Emlet RB (1991) Functional constraints on the evolution of larval forms of marine invertebrates: experimental and comparative evidence. American Zoologist 31: 707-725.
- Podolsky RD, Emlet RB (1993) Separating the effects of temperature and viscosity on swimming and water movement by sand dollar larvae (<u>Dendraster excentricus</u>). Journal of Experimental Biology 176: 207-221.
- Podolsky, RD (1994). Temperature and water viscosity: physiological versus mechanical effects on suspension feeding. Science 265:100-103.
- Strathmann, RR (1990). Why life histories evolve differently in the sea. American Zoologist 30:197-207. Vogel, S (1978). Organisms that Capture Currents. Scientific American 239:128-139.